Week 2

2.1 Cyclic groups

Definition. Let G be a group, with identity element e. The order of an element
g € @, denoted by |g|, is the smallest positive integer n such that g" = e; if no
such n exists, we say that ¢ has infinite order and write |g| = occ.

Exercise: If G has finite order, then every element of GG has finite order.

Proposition 2.1.1. Let G be a group with identity element e. Let g be an element
of G. If g" = e for some n € 7, then |g| divides n.

Proof. Let m = |g|. Suppose g” = e. By the Division Theorem, there exist
(uniquely) integers ¢ and 0 < r < m such that n = mq +r. So ¢" = (¢™)? - g"
which implies that g" = e. This forces » = 0 (since otherwise this violates the
definition of |g| = m). Hence m | n. O

Given an element ¢ in a group GG, we define the subset (g) C G as the set of
all integral powers of g:

(9) =1{9" :n € Z}.
Recall that

9] = min{n € Z-o: g" = e} if In € Z-( such that g" = e,
971 « otherwise.

Proposition 2.1.2. If |g| = oo, then (g) is an infinite set; in fact, the map 7. — (g),
n — g" is a bijection. If |g| = m < oo, then

(9) ={e,g,6% ...,g" ).

Proof. Suppose |g| = oo. It follows from the definition of (g) that the map Z —
(g9), n — g" is surjective. So we only need to show that it is also injective.



Suppose g™t = ¢"* for some ny,ny € Z. If ny # ny, then without loss of
generality, we can assume that n; > no. Then we have g"' "2 = e withn; —ny €
Z~. But this violates the assumption that |g| = co. Hence we must have n; = no,
showing the required injectivity.

When |g| = m < oo, we want to show that (g) = {e,g,¢% ...,9™ '}
Clearly we have (g) D {e,g,9% ...,9™ '}, so we only need to prove the re-
verse inclusion. Take an element ¢" € (g). Then the Division Theorem im-
plies that there exist integers ¢ and 0 < r < m such that n = mq + r. So
g"=(g™)1-g"=g" €{e, 9,9 ...,g™ }. This completes the proof. O

Definition. A group G is cyclic if there exists g € G such that every element of
G is equal to g" for some integer n. In this case, we write G = (g), and say that g
is a generator of G.

Remark. The generator of of a cyclic group might not be unique, i.e. there may
exist different elements gy, go € G such that G = (¢1) = (go)-

Example 2.1.3. e (Z,+) is cyclic, generated by 1 or —1.
e (Z,,+) is cyclic, generated by 1, or k € Z,, such that ged(k,n) = 1.
o (U, -) is cyclic, generated by (,, = €>™/™, or (" for any integer n € Z,,

such that gcd(m, n) = 1.

Exercise: A finite cyclic group GG has order n if and only if each of its generators
has order n.

Exercise: The group (Q, +) is not cyclic.

Example 2.1.4. Let p be a prime. Let G = (Z,, +). For all g # 0 in G, the order
of g is p.

Proof. Exercise. H
Proposition 2.1.5. Every cyclic group is abelian

Proof. Let G be a cyclic group. Then G = (g) for some element g € G and every
element is of the form ¢" for some n € Z. Now

ni

9

So @ is abelian. (]

Remark. The converse is not true, namely, there are non-cyclic abelian groups
(e.g. the Klein 4-group Zo X Zs).



2.2 Symmetric groups

Definition. Let X be a set. A permutation of X is a bijective mapo : X — X.

Proposition 2.2.1. The set Sx of permutations of a set X is a group with respect
to o, the composition of maps.

Proof. e Let o,y be permutations of X. By definition, they are bijective maps
from X to itself. It is clear that o o 7y is a bijective map from X to itself,
hence o o v is a permutation of X. So o is a well-defined binary operation
on Sy.

e Fora, 5,7 € Sy, itisclearthat «o (S o) = (o ) 0.
e Defineamape: X — X as follows:
e(r) =z, forallze X.

Itis clear thate € Sx,and thateoo = ocoe = o forall o € Sx. Hence, ¢
is an identity element in Sx.

e Let o be any element of Sx. Since o : X — X is by assumption bijective,
there exists a bijective map 0! : X — X such that goo ™! !

=0 o0 =e.
So o~ is an inverse of o with respect to the operation o.
]

Terminology: We call Sy the symmetric group on X.

Notation. Let n be a positive integer. Consider the set /,, := {1,2,...,n}. Then
we denote S, by S, and call it the n-th symmetric group.

For n € Z~, the group S,, has n! elements.
For n € Z-q, by definition an element of .5, is a bijective map o : I,, — I,,,
where I,, = {1,2,...,n}. We often describe o using the following notation:

":(021) 0(22) Uzln))
(329

is the permutation on I3 = {1, 2, 3} which sends 1 to 3, 2 to itself, and 3 to 1, i.e.
o(l)=3,0(2) =2,0(3) = 1.

Example 2.2.2. In S3,



For «, 8 € S5 given by:

we have:

123\ (123 12 3
O‘B:aoﬁz(2 3 1)"(2 1 3):(3 2 1)

(since, for example, v o 3 : 1 £> 25 3.).
We also have:

123\ (123 123
ﬁa:ﬁoo‘:(Q 1 3)0(2 3 1)2(1 3 2>

Since o # [a, the group S3 is non-abelian.
In general, for n > 3, the group 5, is non-abelian (Exercise: Why?).
For the same o € S5 defined above, we have:

oo (123 (123 (123
@ maca=19 3 1 231/ (31 2
s o (1023)_(123) (123 _
T =1y 31 312/ (1 223)7°

Hence, the order of «v is 3.

and:

More on S,

Consider the following element in Sg:
(123456
77\5 436 12
We may capture the action of o : {1,2,...,6} — {1,2,...,6} using the nota-

tion:
o = (15)(246),

where (i1is - - - 7)) denotes the permutation:
11— ig,iQ — 2.3, . 77;19—1 — Zk,Zk — 1

and j — jforall j € {1,2,... , n}\{i1,i2,...,01}. Wecall (i1iy---ix) a k-cycle
or a cycle of length k. Note that 3 is missing from (15)(246), meaning that 3 is
fixed by o.



Proposition 2.2.3. Every permutation o € S, is either a cycle or a product of
disjoint cycles.

Proof. Later. ]
Exercise: Disjoint cycles commute with each other.

A 2-cycle is often called a transposition, for it switches two elements with
each other.



